THERMAL AND DIFFUSIVE RELAXATION OF AN EVAPORATING
DROP WITH INTERNAL HEAT LIBERATION

F. G. Volkov and A. M. Golovin

The problem of nonsteady-state evaporation or growth of a radiating drop with uniformly
distributed internal heat sources is considered. The Reynolds R = ua/v < 1 and Peclet Pp =
ua/D <« 1 numbers are assumed to be small (a is the radius of the drop, u the velocity of its
relative motion, and v, D, y the coefficients of viscosity, diffusion and thermal diffusivity of
the vapor-gas medium). This enables the convective transfer of vapor and heat to be neg-
lected, and the concentration and temperature fields to be regarded as spherically sym-
metric [1]. In view of the fact that the density of saturated vapor is less than the density of
liquid the convective flow caused by the change in radius of the drop is not taken into account
[2]. It has already been shown [3,4], that for » < wy (n, ®y are the coefficients of molecular
and radiative thermal conductivity) there exists a bounded region r € (1/a) VA /A7 (« is the
absorption coefficient for radiation in the gas), in which the effect of radiation on the tem-
perature relaxation of the vapor-gas medium is negligible. If the condition a < (1/a) vt /Ap
is satisfied, then the temperature at the outer boundary of this region will be practically the
same as the temperature at infinity T = T.,. This means that terms in the energy equation
connected with energy transferred by radiation can be neglected. It is assumed that the free
path of molecules in the gas is less than the radius of the drop, and so concentration and
temperature discontinuities close to the surface of the drop can be neglected [2].

1. Fundamental Equations. The diffusive and thermal relaxation of a drop with internal heat sources
is considered when the drop, which has a temperature Tj,suddenly enters a medium with temperature Te.
All quantities referring to the drop are denoted by primed symbols, and those referring to the medium by
unprimed symbols. Quantities referring to the boundary have the subscript a, those referring to the fluid
or vapor have the subscript 1, and those referring to the gas have the subscript 2. Symbols for total quan-
tities have no subscripts. Thus the total number of molecules per unit volume is n =n; + n,. Let m be the
mass of a molecule, p the density, and v the radial component of velocity of the medium. Then

01 = Mytly, P2 = MyR,

‘ (1.1)
p =p; + 02 Py = P19 + Palp .
The nonsteady-state diffusion equation for small Peclet numbers has the form
91 __ (0 _2_ /D*‘zp_l Ag) D* =mmD/p 1.2
at —(0r+r)K 6r+ ar (A=(m1nkT+pl)D*/T,) (1.2)

Here D is the diffusion coefficient, kT is the thermal diffusion ratio, and T is the absolute tempera-

ture.
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In accordance with the theory of Chapman and Enskog [5] for a binary mixture at constant pressure
and in the absence of external forces, the relative velocity of the components is, in fact,

D5 E+7ar) (1.3)
If the vapor-gas mixture is treated as an ideal gas, equation (1.3) can be transformed to the form
n—n=— (e L AT, (1.4)
The equations of continuity
%Jr(;f—,qh%)pwx:o, %%+(§,+—i)pzvz=0 (1.5)

and Eq. (1.3) give

LGt =Gt 2 (S a ) (1.6)
Further, eliminating v, from Eqs. (1.1) and (1.3) we obtain
n=0+ pz(p* (fg): +4 6T> (L.7)
If we set (1.7) in Eq. (1.6) the diffusion equation assumes the form
0‘55+(§;+%>91”=<%+2r)<0*6§: +Ag,}r) (1.8)

The convective term in Eq. (1.8) can be neglected because of the large difference in densities of the
liquid and gaseous phases, and Eq. (1.2) obtained.

When the boundary condition vy = a for r = a{t) (a is the velocity of motion of the phase boundary) is
taken into account, the vapor flux density at the surface of the drop is

=P @ie— )= —[& (D* 2 aff)] | (1.9)

The saturated vapour concentration p, is a known function of temperature. For the case in which
there is a small temperature differential between the surface of the drop and the temperature of the me-
dium far from the drop this function can be approximated by the linear function

Pia =0, [1 +B(Tp — Te0)/ Tl + (1.10)

The time variation of temperature at the surface of the drop is determined by solving the heat prob-
lem.

Assuming that energy transport from the drop to the gas occurs by way of radiation, diffusion, ther-

mal conductivity, and a diffusive thermal effect, we obtain the following equation for the temperature dis-
tribution in the gas:

aT _ (8 | 2\( *BT a0
= o 5 (e 5 - B

ar
P (B 5]
==t [ )~ T -
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Here y :%/pcp is the coefficient of thermal diffusivity, cp is the specific heat, and k is Boltzmann's
constant.

Since the temperature and concentration differential is assumed to be relatively small, i.e.,
ITu'—Tool<'T00s |pla';91‘001<p1°°

the coefficients D*, y* A and B in Eqgs. (1.2) and (1.11) can be treated as constants. The flux of radiative
energy in the region ap < A/ Ay M <K %y) is [4]

Sp=e5 (Tt —Th) ") r ez besT (B (Ty— T ) at /1, (1.12)

Here « is the radiation absorption coefficient in the gas, ny is the coefficient of radiative thermal
conductivity, ¢ is the Stefan-Boltzmann constant, and ¢ is the effective degree of blackness of the surface
of the drop surrounded by vapor. The energy flux transferred by diffusion as the result of the difference in
enthalpies of the diffusing substances, is given by [5]

8 = 3okT (mo) + ngvy — n2) . (1.13)
Equation (1.13) can be reduced to the follow ing form with the help of equations (1.1) and (1.3) and the
definition of the effective diffusion coefficient D*

5 1 1 : 0p1 oT
SD=‘2"€T(;LT“RT>(,D*EF+AW)- (1.14)

The energy transfer caused by the diffusive thermal effect can be calculated from [5] the equation

nkTkp [ g aT
§1 = nkTky (3 — ) = — —— <D*T3P—:.+Aa_r)' (1.15)

The energy flux transferred by thermal conductivity in a vapor-gas medium with a coeificient of
thermal conductivity ® is

or
Sy — g (1.16)

The energy transport equation in a vapor-gas medium has the following form when terms associated
with the mean mass flux and internal friction processes are omitted:

or /] 2
b 5+ (5 ) (S5 S -8, 5, =0« (1.17)

Remembering that, in accordance with (1.12),

(5 ) e =0

we can obtain Eq. (1.11) from (1.17).

The energy transport equation for r < a is

aT" (8 | 2\oT' | g
=) e T - (1.18)

Here q is the intensity of internal heat sources per unit volume of the drop. The initial and boundary
conditions for the system of equations (1.2), (1,11), and (1.18) are

I"=T), T=Tw po=p~ fort=0r=a

I’"s=00 for r=20, T —>Te, P> Pro for r— oo
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T=T0" =Ty p==9p4 for T=aqa,t==0
R A S ety o)
(=% L).

Here L is the specific heat of vaporization at the temperature of the surface. The last of conditions
(1.19) indicates the energy flux balance at the surface of the drop. It should be noted that an error was
made in [10] in determining .

2. Calculation of the Temperature Distribution. A solution of Egs. (1.2), (1.11), and (1.18) with equa~
tions (1.19) can be sought with the help of the Laplace transforms

H
hl‘\l

oo a

o3 o« o0

T— T o T'—1T —_—

S ®psdt, F' = _’_S ®pstdt, Ge=- (2o gy .
T a T 100

0 1]

The Laplace transforms of the initial equations are

G = D*drz+ A*dr2 (A*—A'“‘>

Pioe

dﬂ dr2 T

o

P1eo
SF = X* B* (B* = B.l_) @.1)

v , d2F’ Too r g
sF' =y ar (sa“ Q + )—; (Q - 3M'Tm) N

The boundary conditions become

F'=0 for r=0, F—0, G50 forrosow
= Y1 Psca
G=G,— 2l g, PoF=F, (BF=BES) o=

(2.2)

e e [ 8] ) (),

(u* = 5% -} daeoTo® -- A¥7* - y*D*B*, ¥ =g pl“)
The following functions are a solution of these equations for the known boundary values GgFg:

G = Grexp [— Vs (r —a)] + Gyexp [— py Vs(r—a)
F = Fyexp[—py Vs (r—a)] ++ Fyexp [—py Vs(r—a)]
v pshrVsiy 4 (3yQ  To—T, r shr¥Vs/y
F=Fe e T (saz+ T )(a“sham/—x—'>

Gi(1+A)=G, ——”—-ﬁ Ca(11-A) = ‘:1; (2.3)
Pi(l+A)=— {2528 Fy(l+A) = Fot f_l_%fx_
W+ D* £V — Dy — A | WA B*
A_
M2 = 3 (*D* - A°B% » = 0 —=pey A — D% °

]

We have, from equations (2.3),

(zlf o mtwmAtmA) Vs (G _ BRATF, )
dr ) - T+ Ap ¢ 1 —p,sD*

(d_F  (mebpA+mA)Ys F, — Wtk ph) Vsw'B* -
d ) o (1+A)‘ A+AP (—py® e

)= P (25 P (- )

2.4)
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Inserting (2.4) in the boundary conditions (2.2) we obtain

oo @ MANVP+(3Q/p+To—To) /Tl — Vrcth Vi)
A M, —N,Vp—Vpcta¥ s

p=as/y M:T*D*(psm—le)]x'le, M* =1 —x*] %

;o . V(% = TFA%) p?B* (e Picd Vi
N = [T*D* (p'l - p‘lA + ne) 4+ (p‘l — Ha— p’2A) T—py* 11 X T+ A)prloo (2,5)
_ VD (A A - peh) f pRAY N\
IV* - % (1 - M) \B* - ‘1 — y;zzD*)‘l/X
A Vo' !
+ (M-:l (1 _'lr_ixl)/z-% [H2 _Il— p‘lA- + ”2A - B*MJ,ZB* {Ml — Whg — p:zA)/(i —_ }lex*)}

It follows from equations (2.5) that

¢}-ica

Te)—To _ 1 M+NVP+[3Q/p+To—T,) T} (1 —Vpecth Vp) Yex (p_x_t dp
T M, —NVp—VpcthVp P a“) P’

t

21 (2.6)
B

oy

[oe] R
100

If we do not take into account the internal generation of heat and energy transport by radiation and
diffusion, then for p, = p equation(2.6)should coincide with the result [6, 7] previously obtained by another
method. The corresponding equations in papers [6, 7] are, however, given in a somewhat incorrect form,
since a factor 1/2 was omitted in calculating the Laplace transform of vi. Moreover, in calculating the
temperature in papers [6, 7] the authors did not note that poles of the integrand are situated outside the
region |argp| < .

The integrand has a branch point at p = 0. A search for the poles of the integrand reduces to investi-
gating the roots of the equation

M —N,Vp—VrethVp=0, (2.7)
If roots of this equation exist for [p| < 1 then it is sufficient to confine ourselves to the first terms
of the Taylor expansion of cth vp when searching for them:?
P+INVp+3(1—M,)=0, (2.8)

Since 1 — My > 0, N, > 0, the roots of this equation vp; and vp, are situated on the left-hand side of
the plane of the complex variable vp symmetrically relative to the real axis. Thus these singularities turn
out to be outside the principle branch of arg p in the p plane.

In addition to these roots there exist roots for Ny « 1 whose position is determined by the following
equation in the zeroth approximation:

M= VO ctn V50, (2.9)
If 1—Msx <1 thén {8]
Vo0 =Zud | Vi=a—1/ay..., g=E+Y)n (k=1,2,..), (2.10)
If corrections are sought in the following approximation «/BE = \/E((T) + g, then we have from (2.7)
o =N, VoD Vil |V 5P =sh V 5P onV o) — Nosinty, . (2.11)

It is clear from this that these poles are also situated outside the principle branch of arg p. A simi-
lar situation arises for any N4 > 0. In fact the roots of Eq. (2.7) for |p| > 1 are given in the zeroth ap-
proximation by

VP=1Lo[l, 1/ N +01 . (2.12)
It is clear that Revp < 0 for Ny > 0.
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Thus the integrand dces not have poles in the region |arg p| < 7. Calculation of the integral in (2.6)
consequently reduces to calculating the integrals along the lower and upper boundaries of the branch cut
made along the negative part of the real axis, and the integral around a circle of infinitely small radius
enclosing p = 0.

Thus
T, o_m 1F r ) . | 3
Ty =.1Q_~MIZ ‘f"ﬁLS%P\ (M*“VPCthp)+1W]\*__N*(_§_
b
To—T ° _ ) )
— °T’Do °°) (14— VP cth VP)] (M, — ]/p cth _|/p)2—|— N 2pt

, _ ® | 2.13)
Xexp(—fiflg—“)=?_£ +%S [N(chgz_M*)—MN*

-0

+N, (39' — T°°) (1 — zotga)] [(sotg s — M,)? N, 22" oxp (— 22 L) da.

(2]

Since 1 — My < 1 for gases usually, the integrand reaches a maximum with effective width of order
N« at the points z, ::twﬁ’)(l — My) “9/4 N*z, situated in the region |z| << 1. The position of the second maxi-
mum corresponds approximately to z, = 13/271

If

T T (T = 4a* ] 9Py, v =a? ] 3" (1 — M,))

then the integrand can be taken to be nonzero only in the region |z| € z4, since the remaining maxima of the
integrand whose positions canbe determined from the equation M,tgz = z in the zeroth approximation,
contribute negligibly to the integral because of the presence of an exponential factor.

Thus for Ny <« z; the integral (2.13) can be represented in the form

Ta_Too —M 1 3 To—T,
————T =1Q—_—-——M*'—?[N* (-Z_]_Q‘-_ T oc) (1_—210th1)

[+'=3 [eed

(2.14)

oo
[ ¢ 9dz _Q—M Ty—T Q—M) 2
——]‘IN*] exp \= T) S @—22F X ON 22 1—M + ( 7P Z 1=, exp (“”,E‘) N

—o0
In the absence of energy transfer by radiation and diffusion, and also when there is no thermal dif-
fusion or diffusive thermal effect, the expression for 7 coincides with that obtained previously [6, 7].

The characteristic temperature relaxation time at the surface of the drop can be estimated assuming

that the change in T, is a much slower process than the establishment of concentration and temperature
fields for constant boundary conditions.*

Equation (1.18) and the boundary condition (1.19) give

a
L LG AT g, 0T g «(Op1\ g <QT -
oo S_a_zﬁ.dr__s.—{—u (7;)“_.3_—[—7?) <—37>a 40T 3 (Tg— T'op) + (4 41) 57 )., (2.15)
0

If t > a¥/x', t » a’/x*, t » a’/D* we may make the following approximation in the left-hand side of
Eq. (2.15)

a d
50 (1 )= 7 Ta ().

*Yu. S. Sedunov, Formation Kinetics of a Cloud Spectrum, Doctoral Dissertation, 1967,
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The temperature and concentration fields will then be close to steady-state fields corresponding to
the instantaneous values of the boundary conditions

(31’\ Te— Ty <6p1) Psoo— Pioo PPy (Ta—T4)
’ a

=" a === T ay, (2.16)

Inserting (2.16) in Eq. (2.15) we obtain

a? dT,

" ga 1B D"
T g7 =3 — D% (P — Prop) — (\u + daesT, 2+ Ay + —=

TOO

>(T,,—TO°)3 (2.17)

This leads to a result which corresponds with that obtained previously, i.e., 7= a2/3x‘(1 — M,).
'For large times when the inequalities
I, 123> T (T = N2t/ (1 — M)

are fulfilled, the main contribution to the integral (2.13) comes from the small neighborhood of the point
z =0, within the limits of which

23— M), Nzt << (1 — M.

In calculating the integral in front of the exponential function,the asymptotic value for small z may
be used to replace it:

7,—T Q—M N N, a
a e 1 _ 3 R
: [ (e=m +1——M*> VW] (2.18)
If the condition Ny? > 1 — M« were satisfied then the quantity 7, would be the characteristic tem-
perature relaxation time at the surface of the drop, However, only the case T > 7T« is evidently realized.

For times t > T the temperature at the surface differs little from the steady-state temperature and,
as is clear from Eq. (2.17), heat losses in warming the drop can be neglected in this case.

In the absence of heat transfer by diffusion, thermal diffusion, and thermal-effect diffusion (A =B =
0) the diffusive and thermal fluxes in the gas for constant boundary conditions are known [9] to vary as
follows:

.__pD* @
’:p_za—(pm—Pmo) (1+ VD%

a

(T =1 (14 )«

(2.19)

alx

S, =

®

The heat flux transferred by molecular thermal conductivity in the drop is taken to be equal to its
steady state value [10]

- fot 1
—% <57)a=§ e » (2.20)
The equation of balance for the energy fluxes at the boundary of the drop has the form
a . yD* ‘@ 1
%(TG—TOO)(HW) 10T (o —To) + 55 010 — P10 (1 gy ) = T 98+ @.21)

Equation (2.21) together with the boundary condition (1.10) enables us to calculate the change in tem-
perature at the surface of the drop for large times

To— Too M'plole — 1*D* (pm — ploo) ‘[ ( T*D* (pla _ Plvm) %VD' 7% 4 B**D* N a ] 9. 99
T Pro (%1 4aesTq 2+ B*1* D7) | L= 0Py @ 7D (rg — Pro) T % 4aBoT 3 B*x*D') VuD¥tl* (2.22)
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This equation coincides with (2.18) if we take A =B =0 in the latter.

3. The Diffusion Flux and Heat Flux Caused by Molecular Thermal Conductivity. The Laplace {rans-
forms of thatpart of the diffusive flux j, proportional to the concentration gradient, and of the energy flux

S,, transferred by molecular thermal conductivity, have the form

e} 0

7= jo(hyexp(—stydt, ()= Su(t)exp(—st)dt.
Ny (]
It follows from equations (1.9) and (1.16) that

——— PP ; PyoollelA
T(5) = 22 (4t Vo) B2 0% BoguFy + (Bpvn— P ) y e, ]

00— Proo) VT*
I(s)="22 [(1 Y s 4 8% Y eRs) Fy 4 (E_P.l._i/__f_]
loo
O = W A £ peA)? 7, = S (e oA - fad)?
D (1 AR = (1 - A

Vo* = a(pa — pa+ mA) B V(1 + AP (1 — px*).

In order to find the inverse transforms of equations (3.2) we must calculate

1 —

— Fg (s) exp (st) ds

2t Vs Fals) exp Ta
G—ioo —00

otico Vi °§ M —[3Q /2 — (To—To) | Tool} (M, — 2z clg z) — NN 22 exp ( _L

(Mg, —zctgz)? 4 N2z
For times in the interval 1 <t < 7

G+ics -

1 - _ 3NV Yy A
2—]_”7 S VS Ea(S) €xp (St) di = '——'a—.exp ( ?) L4
g—ics
For large times t>»> T
" g4-ico 0 o1
5= Vs Fg(s)exp (stydt = S ——
ch_Sim @ 1— M, Vs

Thus for times Ty=<t £ T on condition that N,° << 1 — My < 1

()= 7,27*[@@ ) (£ + X2 ) 1 o, T T b

Proolh? ) ¢
—T VX mD(BP;oo —“I—AD*)GXP (“T

(3.1)

(3.2)

)dz . 33

(3.4)

(3.5)

\

IEE)

A quasi-steady-state evaporation regime, i.e., a regime for which the density of the diffusive flux is
determined by the instantaneous value of the temperature at the surface of the drop, clearly exists, from

(3.6), if the following inequalities are satisfies simultaneously:

To—T,| _
TOO

To=To[1+(Q—M)](1 —M,)].

3N Vax't, ( 8o Pyooli?A* )
500

B8P o T 1T pD*

t>'l7D,

Here T, is the temperature at the drop surface for a steady-state evaporation regime.

(3.7)
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If A =B =0 then the condition for a steady-state evaporation regime (3.6) to exist for times 7y <t £
T can be transformed to the form

p'ep’| To— To|>> 3L | Pgo0 — Proo| (P ] 03) (3.8)

Thus when the condition N«? < 1 — My < 1 is fulfilled a quasi-steady-state evaporation regime
exists for the drop in the time interval 7y <t £ 7 if the quantity of heat absorbed or liberated per unit vol-
ume of the drop in its temperature relaxation process is considerably in excess of the heat losses per unit

volume of the vapor-gas medium, associated with the ph&se transition when the vapor concentration
changes by an amount [pge — pi-

The result of (3.8) is absent from [6], where the study of the quasi-steady-state regime was re-
stricted to examination of whether the condition N*2 «1—Myx was met,

When the conditions N*2 «1-— My <1 are satisfied the heat flux for times 7y <t < 7 is '

T Tat—TOO soa ooV'—* ’ —7 P .
szu—a‘—[ ()Too : +(P 91:11/)? i —%V“X (V71+B* ]f'l:—*)exp(——--—:—ﬂ . (3.9)

It is thus clear that a quasi-steady-state regime exists for the heat flux if

Ty—T,

I >1%,
= Too

XV (Ve B VT

>

3

(3.10)

For the particular case A =B =0, (3.10) assumes the form »
'y’ | To — To| > BLY D¥ [ %, pgo0— Proo] (97 02) o (3.11)

It follows from equations (3.8) and (3.11) that the conditions for a quasi-steady-state regime to exist
for the diffusive and heat fluxes are in fact the same.

Changes in the diffusive and heat fluxes for large times t > 7 are described by the equations

o) =22 [ (P20 — D1c0) (1 + X ) 4 Bpen 20T 4 (B, — Pt T M).WB]

Vi Too t—WaD* ) — My Ve
Sy () = Teo[TaO=Ter | Peo— i) V|, QMY 46 VD ] (3.12)
* e T°<? P10 ﬁ (1—‘M*)V‘i ’

Let the conditions A = B =0 be fulfilled. It is clear from (3.12) that any change in the diffusive and
heat fluxes occurs with characteristic times 7p and 7y.

When conditions 7 > Tp, T > 7y, t > 7 are fulfilled we can expect that the diffusive and heat fluxes
will be practically the same as their steady-state values.

The authors are grateful to V. G. Levich for discussing the results of the paper.
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